A Modified Rete Match Algorithm for Predicate
Management in Real Time Planning and Execution
Systems

Marcelo Nicoletti Franchin

Electrical Engineering Department, Faculty of Engineering
UNESP - Sao Paulo State University
Av. Luis Edmundo Carrijo Coube 14-01
Bauru - Sao Paulo - CEP 17033-360 - Brazil
franchin @feb.unesp.br

Abstract. Automatic action planning for task accomplishment is one of the Al
areas called AJ Planning, where intense research occurred in the last decade.
Among the many categories of planners and diverse problem domains, there are
real time planners that consider external events and generate the plan
interleaved with the execution system, processing real time collected data (i.e.
sensory data) that have influences on the planning process. This paper presents
a modified version of RETE match algorithm that is used to instantiate the
parameters of prototype predicates and to verify if a predicate is true in a given
world state. This modified version was implemented in a real time planner
using ALWAYSrx method. As a result, an efficient system for real time
intelligent control was obtained and it is currently used in our research robots.

Keywords: RETE algorithm, Al/Planning, Artificial intelligence, Real time
planning, Intelligent systems.

1 Introduction

Automatic action planning for task accomplishment is one of the Artificial
Intelligence areas called Al Planning, where intense research occurred in the last
decades. A great problem in automated reasoning is to design systems that can find
automatically a sequence of actions (or a plan) that allow an agent to change the
environment (called world) from an initial state to a desired state (goal state). This
plan could be delivered, for example, to a manufacturing system, a robot, or any kind
of actuator that, following the plan, execute the actions and make the world change to
the desired goal state. In antificial intelligence terminology they can be called agents
(121

Early AI planning systems appeared in the sixties and at that time some
assumptions were created to simplify the planning problem [3][4]. One of the

© L. Sanchez, O. Pogrebnyak and E. Rubio (Eds.)
Industrial Informatics

Research in Computing Science 31, 2007, pp. 153-162

154 M. Nicoletti

assumptions was considering the agent (a robot, a manufacturing system or some
another form of actuator) the only entity responsible for changing of the world state.
Another supposition of the planning system was the belief that the changes made in
the world by the agent were totally deterministic.

At that time the planning problem was to create techniques and heuristics to search in
a tree of possible plans to achieve a desired goal. The complexity of this problem was
analyzed years later and considered NP-Complete and NP-Hard [5][6]. Nowadays the
complexity was demonstrated to be much harder with variations [2][7].

Considering applications in complex environments with uncertainty and dynamic
changes, easily found in real world, like manufacturing systems, mobile robots, software
agents, inspection, maintenance, surveillance, etc., the changes in world state are made
by multiple agents. If the planner considers that only its agent can change the world, the
resulting action plan may not represent the reality and the execution of this plan would be
incompatible with the world where the agent is inserted. Therefore, the planning system
must use its perception resources to adequate the plan to the eventual contingencies
during the plan execution.

Beyond the dynamics and unpredictability of the environment, the agent owns
sensors and actuators that do not work in an ideal way and the time available for
decisions is very limited. The knowledge base of the agent therefore is incomplete
and the planning system must consider this aspect to make possible agent interaction
in unstructured environments [8][9][10].

Nowadays, the planning systems evolved to deal with real world applications. A
planning system with treatment of external events integrated to the execution is a
problem of enormous complexity and demands techniques that optimizes performance
of execution to avoid system overhead, otherwise its use will be impracticable in real
world environments because response time constraints [11].

Amongst the inherent problems of the planning methods there is the parameter
instantiation of predicate prototypes that consists in a combinatorial task that can take
a considerable processing time. Moreover, the process of verifying if a predicate is
true in the world state consists of comparing the predicate with each one of the
predicates that describe the state of the world. The computational cost of both
comparisons increases linearly with the amount of facts and exponentially with the
amount of changeable parameters of a predicate.

This paper presents an adaptation of RETE match algorithm that was implemented
in a real time planner using the method ALWAYS gx.

Section 2 presents the complexity of the problem and related work. Section 3
presents a summary of ALWAYStrx method where the adaptation of RETE
algorithm was used successfully. Section 4 presents the adaptations made in RETE
algorithm with an example case study in the blocks world. Finally, in section 5, the
conclusions and future works are presented, followed by the bibliographical
references.

A Modified Rete Match Algorithm for Predicate Management 155

2 Problem Complexities and Related Work

Early work integrating planning and execution like STRIPS/PLANEX [12][13],
Universal Plans [14], IPEM [15], BUMP (16], XII [9], SIPE-2/PRS-CL [17}(3] e
SAGE [11], as well early works in planning with incomplete information like UCPOP
[18], BURIDAN and C-BURIDAN [19], among others, had been collaborated to the
development of planning systems but partially solve the problem of plan in dynamic
and unstructured environments because they do not consider, altogether, the aspects
early presented. More detailed discussions can be seen in [20].

Research in planning systems that handle external events have been developed by
our planning group since the eighties. Among the systems developed are: the
PETRUS system [21], EXTEPS [22], PBE [23] and finally, the ALWAYSy, in its
early research stage being presented shortly in this paper. The ALWAY Stgrx method
[24][25] is an effort to create systems that can effectively plan in complex, dynamic
and unstructured real world domains.

As cited previously, the problem of parameter instantiation of predicates and the
process of logical verification of a predicate in a given state, both have a very hfgh
computational cost. Solutions have been found to make possible real time planning
systems [26].

A similar problem to the described one in the previous paragraph is the work of
find the match in the comparison of a set of patterns with a set of objects, made by the
interpreters of rule production systems. They must determine which rules of
production must be triggered through the comparison of its logical expressions
(conditions to fire a rule) with the facts declared in the working memory.

A fast and efficient algorithm to execute this task is RETE algorithm [27]. RETE
algorithm is, at least, many times more efficient than any another algorithm already
developed for the task to compare objects with patterns {28][29][2].

Among the best algorithms that work with this kind of problem, there are TREAT
[30] and GATOR [31]. The LANA algorithm [32] is a parallel version of RFTTE
algorithm. An extension of RETE algorithm for the management of events with time
information is presented in [33]. RETE algorithm still is the champion of efficiency
being used in commercial and open systems as JESS (rule engine of the Java
platform).

Therefore, RETE algorithm was chosen as a reference algorithm to be adapted to
be used with parameter instantiation of predicates and in the verification and storage

of predicates in a given world state, resulting in the performance enhancement of the
ALWAYS real time planner.

3 ALWAYStrx Method

The ALWAYSmrx method (ALWAYS Thinking, Reacting and eXecuting) [24](25]
was designed to integrate the agent’s planning task and execution task, includmg tpc
external events treatment inside the planning phase, to give to the agent reactivity
capabilities to the dynamic world changes in which it is inserted.

156 M. Nicoletti

The integration approach requires that planning decisions followed by execution must
be based in a common knowledge representation.

With ALWAYSryx the planning system integration with the plan execution system
considers that planning must be done concurrently with plan execution (the plan is made
“on the fly”). The plan being created by the planner is represented by a tree where the
nodes mean activities and events. Each path in the tree represents a sequence of activities
with events that may occur. The execution module must follow one path in the tree.
While the planner creates new paths, the execution module chooses one of these paths to
execute, based on the actual occurrence of the external events associated with the chosen
activities.

The planning system uses the information about which external events actually
happened, obtained from the environment through the execution module, to adequate the
paths to the real world state. As the execution module executes one step of the plan, the
paths of the search tree not associated to the path that contains this step are excluded
from the tree. One plan step means 0 observe the occurrence of an external event and
initiate the execution of the correspondent activity. When a event occurs, the planner
keep expanding paths below this event in the tree and exclude the paths that do not go
through this event.

The ALWAYSgx is domain independent and can be used in many engineering and
automation applications such as intelligent manufacturing and robots control.

Fig. 1 presents how the method is inserted in the context “see, think, act” and its
internal architecture that consists of two modules running concurrently: the planning
module and the execution module. Both modules constantly communicate through a
common knowledge base.

USE
USER
l T PLANNING [¥
KNOWLEDGE
MODULE
sensors | AEWAYSmx | \cruaTors i
o] beduttitler operators
METHOD N—,| evems
paths
initial state
K— goal state
(@ Petri-net
EXECUTION _—/¢
SENSORS NODULE.] AQTUATORS
DR .

()

Fig. 1. (a) ALWAY Syrx method in the context “see, think, act”; (b) ALWAY Strx method’s
internal architecture.

As the planning module generates the plan, the paths are stored in the knowledge
base. The execution module reads the knowledge base and follows the plan to be
executed. As the execution module works, the activity being executed and all the
information about which external events are happening are stored in the knowledge base.

A Modified Rete Match Algorithm for Predicate Management 157

The planning module uses the information stored by execution module in lhe‘ knowledge
base in order to keep synthesizing the plan paths with updated world information.

4 RETE Algorithm Adaptation for the ALWAYS Method and
Results

The RETE match algorithm is widely used in production rule systems. It works in
two distinct phases: one of compilation (creation of the RETE net) and another one of
matching check (operational). In the first phase, the algorithm compiles the set of
rules inside the knowledge base (KB) in a net of linked nodes (an acyclic graph).
Each node contains part of the conditions to fire a rule. In matching phase, the net
processes each fact added or removed from the working memory. When a fact is
added to the KB, it is presented to all nodes sons of root. Each node receives the fact,
applies its test and, if the result of the test is true, the fact is stored and sent to the
subsequent node (son nodes). If the test fails, the node simply ignores the presented
fact and discards it. The last nodes (the leaves) in the net that receive a fact represent
the rules to be fired.

In the implementation of the ALWAYSzx , RETE algorithm was adapted to make
the analysis of the preconditions of operators and events, considering its performance
and efficiency in finding equalities in multiple comparisons of facts with a high
computational performance. The adapted RETE algorithm will be described in this
section. The new adapted algorithm and new adapted RETE net will be referenced as
RETEADAPT and RETEADAPT net, respectively.

Each change in world state (facts added or removed) calculated by the planning
module is sent for the RETEADAPT and it indicates, as it was a combinational
circuit, the operators and the events whose preconditions had been satisfied. With }he
operators and events enabled, the planner module expands each node of the planning
tree.

RETEADAPT uses an acyclic graph where the nodes, except root node, represent
the patterns that will be compared. The paths from root node until leaves represent the
preconditions of the operators and of the events, which are the pattemns to be
analyzed. This graph is called RETEADAPT net. Inside RETEADAPT net, each node
stores a pattern that will represent which elements from the world state satisfy the
precondition of an operator or an event.

4.1 RETEADAPT Net Compiler

After the user insertion of operators and events with the correqunding
preconditions, a procedure of creation of the net must be executed, that consists of
compiling all the preconditions of operators and events, creating the nodes of the
RETEADAPT net. Each node represents the test of a constant or variable declared as
a parameter of a precondition. When there are preconditions with many parameters

(constants or variables) and many predicates prototypes, a node will be created for
each one of them.

158 M. Nicoletti

RETEADAPT net has four types of nodes: the root node, one-input node, two-
input node and enable-operator or enable-event node. Each one-input node can
represent the name of the predicate prototype and the constants or variables that were
declared as parameters. When a precondition has two terms linked by AND
conjunction (e.g. clear(x)"ontable(y)), one-input nodes will be used to test the
individual results and a two-input node will be used to join them.

Below there is an example of blocks world to illustrate how RETEADAPT net is
created and used. It assumes the blocks world given by fig. 2. Three blocks are on a
table and a manipulator robot must stack the blocks to reach a goal state. The
definition of the ALWAYStgx operators and events follows STRIPS definitions and
can be seen in [24][25].

ALWAYS.zx operators:

operator : pickup (x)

precondition: ontable (x)“handempty”clear (x)

del-1list : ontable (x) ,handempty, clear (x)

add-list : holding(x),running (PICKUP)

operator : putdown (x)

precondition: holding (x)

del-list : holding (x)

add-list :ontable (x),handempty,clear (x),running (PUTDOWN)
operator : stack(x,y)

precondition: holding(x)“clear(y)

del-list : holding(x),clear (y)

add-list : handempty,on(x,y),clear(x),running(STACK)
operator : unstack (x,y)

precondition: handempty”on(x,y)“clear (x)

del-list : handempty,on(x,y),clear (x)

add-list : holding(x),clear (y),running (UNSTACK)

ALWAYSpx events:

event : endactivity (x)
precondition: running (x)
del-list : running(x)
add-list s inyl

In this example, the robot can execute four actions. The pickup(x) operator
represents the robot action “to catch block x that is on the table and keep this block in
its grip”. The putdown(x) operator represents the robot action “to place block x, that
is in its grip, on the table and release the block, freeing the grip”. The stack(x, y)
operator represents the robot action “to place block x, that is in its grip, on block y,

A Modified Rete Match Algorithm for Predicate Management 159

leaving the grip free”. The unstack(x, y) operator represents the robot action “to catch
ablock x that is on block y and keep this block in its grip”.

Initially RETEADAPT net must be created compiling the preconditions of the four
operators. Analyzing the precondition of the pickup(x) operator, there are three terms:
the predicate prototype ontable and clear, with x variable as parameter, and the

predicate without parameters handempty. RETEADAPT net is assembled with three
nodes below root node.

Initial State Goal State
clear(C) on(B,C)
clear(B) on(A,B)
on(C,A) ontable(C)
handempty clear(A)
ontable(A)

ontable(B)

/_I_\

[°]
0"w|>

A B
v V//4 V/4

Fig. 2. Blocks world example. Left Initial State. Right Goal State.

ontable

L handempty j l clear J

ontable(x) AND
handempty

ontable(x)AND
handempty
AND
clear(x)

v

I pickup(x) I

Fig. 3. RETEADAPT net for pickup(x) operator.

160 M. Nicoletti

As the pickup(x) operator has a three term precondition with conjunctions AND,
the algorithm creates two-input nodes to represent ontable(x)*handempty and after
that ontable(x)*handempty”clear (x). Fig. 3 shows these two nodes with the enable
operator node pickup(x). After the analysis of all preconditions of the others three
operators, RETEADAPT net will be link fig. 4.

| ontable l handempty J l

= -
e N e \ X
ontable(x) handempty & / \

L =

ontable(x) clear(x
AND 169
handempty
handempty on(x,y)
AND
clear(x)
A 4
enable enable enable cnable
pickup(x) stack(x,y) putdown(x) unstuck(x,y)

Fig. 4. RETEADAPT net complete after finished operator compilation.

5 Conclusions and Future Work

This paper presented an adaptation of RETE match algorithm, common used by
production rule systems in expert systems, applied to real time planning systems. The
adaptation was made for processing the instantiations of the predicate prototypes and
testing of facts inside the Knowledge Base that describes the world state. This
algorithm was implemented in a real time planner that uses ALWAYStrx method.
The planner works interleaved with execution and considers external events in the

A Modified Rete Match Algorithm for Predicate Management 161

planning phase. With this new algorithm the planning system increased the
computational performance in analysis and synthesis of each state of the plan tree.
Results show until 6 times less processing time of facts and overall planning time.
The implementation of this suitable algorithm became possible the use of the real time
planner to plan actions in many dynamic and unstructured environments. A detailed
description of using this real time planning system on a manufacturing cell’s
manipulator robot, on a service mobile robot and in soccer robots, is being developed
and will be published in the future.

Also as future work it is important to point out the performance optimization of the
algorithm to better improve the response time of the system. The planner uses a
RETEADAPT net in each node of the decision tree. Studies must be made to verify if
it is possible to decrease the amount of information in each node and to use only one
net. Another important aspect is in backtracking of the search tree where the
corresponding predicates to the facts must be removed from the net in order to find
new plans. Further studies must be made in compacting the data bytes used by the net.

References

. Maes, P.: Designing Autonomous Agents. Mit/Elsevier (1991)
- Russel, S., Norvig, P.: Anificial Intelligence: a modemn approach. Second edition. Prentice
Hall International (2003)

3. Georgeff, M.P. et al.: Reasoning about plans and actions. Exploring Antificial Intelligence.
Morgan Kaufmann, AAALI, chap.5, pp.173--196 (1988)

Fikes, R.E., Nilsson, N.J.: Strips: a retrospective. Artificial Intelligence. 59, 227--232 (1993)

. Noreils, F.R., Chatila, R.G.: Plan Execution Monitoring and Control Architecture for Mobile

Robots. IEEE Transactions on Robotics and Automation. 11(2), pp.255--266 (1995)

6. Erol, K., Nau, D., Subrahmanian, V.S.: Complexity, decidability and undecidability results
for domain independent planning. Artificial Intelligence. 76, 75--88 (1995)

7. Hoffmann, J. The FF planning system: fast plan generation through heuristic search. The
Journal of Artificial Intelligence Research. 14, pp.253--302 (2001)

8. Abramson, B., NG, K.: Uncertainty Management in Expert Systems. IEEE Expert. 5(2), 29--
48 (1990)

9. Golden, K., Etzioni, W., Weld, D.: Omnipotence without omniscience: Efficient sensor
management for Planning. In: National Conference on Antificial Intelligence. 12, AAAI
Press. pp.1048--1054 (1994)

10.Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
San Mateo, California, Morgan Kauffmann (1988)

11.Knoblock, C.: Planning, executing, sensing and replanning for information gathering. In:
1JCALI, 14, Montreal. pp.1686--1693 (1995) ;

12.Fikes, R.E., Nilsson, N.J.: Strips: A new approach to the application of theorem proving to
problem solving. Artificial Intelligence. 2, 189--208 (1971)

13.Fikes, R.E.: Monitored Execution of robot plans produced by Strips. In: IFIP Congress,
Ljubljana, Yugoslavia. 1--5 (1971)

14.Schoppers, M.J.: Universal Plans for reactive robots in unpredictable environments. In:
LCA], 10, Milan. pp.1039--1046 (1987)

15.Allen, J., Hendler, J., Tate, A.: Readings in PLANNING. Morgan Kaufmann, San Mateo,

California (1990)

IS

IS

162 M. Nicoletti

16.0lawsky, D., Gini, M.: Deferred planning and sensor use. In: Workshop on Innovative
Approaches to Planning, Scheduling and Control. San Diego, CA, DARPA. pp.166--174
(1990)

17.Wilkins, D.E.: Practical Planning: extending the classical Al planning paradigm. Morgan
Kauffmann (1988)

18.Pemberthy, J.. Weld, D.: UCPOP: A sound, complete, partial order planner for ADL. In:
International Conference on Principles of Knowledge Representation and Reasoning. 3,
pp.103--114 (1992)

19.Kushmeric, N., Hanks, S., Wold, D.: An algorithm for probabilistic planning. Anrtificial
Intelligence, 1-2(76), pp.239--286 (1995)

20.Ash, D.J., Dabija, V.G.: Planning for Real Time Event Response Management. Prentice Hall
PTR (2000)

21.Rillo, M.: Aplicagdes de Redes de Petri em Sistemas de Manufatura. Sao Paulo, PhD Thesis,
Departamento de Engenharia de Eletricidade, EPUSP — Polytechnic School of University of
Sao Paulo (1988)

22 Rillo, M.: Expectation-Based Temporal Projection System. In: Annual Conference on Al,
Simulation and Planning in High Autonomy Systems, 3, Perth, Australia. pp.276--281
(1992)

23.Lopes, C.: Plancjamento Baseado em Expectativas. Sdo Paulo, PhD Thesis, Departamento
de Engenharia de Eletricidade, EPUSP - Polytechnic School of University of Sao Paulo
(1998)

24.Franchin, M.N. et. al.: Planejamento de agdes com tratamento de eventos externos integrado
ao controle de execugdo para agentes inteligentes. In: IV SBAI — Simpésio Brasileiro de
Automagao Inteligente. Sdo Paulo, SP. pp.233--238 (1999)

25.Franchin, M.N.: Um método de planejamento usando eventos extemos € sua integragao com
o sistema de controle para agentes méveis. Sio Paulo, PhD Thesis, Departamento de
Engenharia de Eletricidade, EPUSP - Polytechnic School of University of Sao Paulo (1999)

26.Ulusar, U.D.,Akin, H.L. Design and implementation of a Real Time Planning System for
Autonomous Robots. In: IEEE ISIE International Symposium on Industrial Electronics, july
9-12, Montréal, Québec, Canada. pp.74--79 (2006)

27.Forgy, C.L.: RETE: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence. 19(1), 17--37 (1982)

28.Winston, P.H.: Artificial Intelligence. 3rd ed., Addison Wesley, Reading, MA (1992)

29.Giarratano, J.Riley, G.: Expert System Principles and Programming. 2nd ed., PWS
Publishing Company (1993)

30.Miranker, D.P.: TREAT a better match algorithm for Al production systems. In: AAAI87
Conference on Artificial Intelligence, pp.42--47 (1987)

31.Hanson, E.N.: Gator: A Generalized Discrimination Network for Production Rule Matching.
In: JCAI workshop on Production Systems and Their Innovative Applications. (1993)

32.Mostafa M. Aref, M.M., Mohammed A. Tayyib, M.A.: Lana-Match Algorithm: A Parallel
Version of the Rete-Match Algorithm. Paralle] Computing. 24(5-6), pp.763--775 (1998)

33.Berstel, B.: Extending the RETE algorithm for event management. In: Proceedings of the
Ninth International Symposium on Temporal Representation and Reasoning (TIME’02),
pp-49--51 (2002)

